Supporting Dark Mode for Kony Applications:

iOS 13 supports native Dark Mode! Users can choose to enable a system wide
dark appearance that will be supported in all apps. Kony has also provided API’s
and callback to apply changes for respective appearance mode. To add support
for dark mode, you need to create dark mode theme in visualizer and set it
dynamically with kony API’s.

Apple strongly recommends that all developers check and update their apps to
make sure that all text and images are displayed correctly when dark mode is
enabled.

Detecting Dark Mode Programmatically:

Use the following API to identify the appearance mode and listen the
appearance mode changes.

function getAppearenceStyle() {
var themeApearenceStyle =
kony.application.getSettingValue("applicationAppearanceStyle");
switch (themeApearenceStyle) {
case kony.application.APPEARANCESTYLE_DARK:
alert("APPEARENCE STYLE : dark mode");
break;
case kony.application.APPEARANCESTYLE_LIGHT:
alert("APPEARENCE STYLE : light mode");
break;
case kony.application.APPEARANCESTYLE_UNKNOWN:
alert("APPEARENCE STYLE : unknown mode");
break;

¥

function callback(params) {
switch (params.setting) {
case "applicationAppearanceStyle":
switch (params.applicationAppearanceStyle) {
case kony.application.APPEARANCESTYLE_DARK:
//alert("selected dark mode");
kony.theme.setCurrentTheme("darkTheme",
onThemeCallback, onThemeCallback);
break;
case kony.application.APPEARANCESTYLE_LIGHT:
//alert("selected light mode");
kony.theme.setCurrentTheme("lightTheme",
onThemeCallback, onThemeCallback);
break;
case kony.application.APPEARANCESTYLE_UNKNOWN:
//alert("selected unknown mode");
break;



break;

}

function onThemeCallback() {
//alert("theme callback");
}

b
kony.application.registerOnSettingsChangeCallback"applicationAppearanceSty

le"], callback);

Update the Application appearance:

Use the following code snippet to update the kony app theme with respective
to the applicationAppearanceStyle.

function updateApplicationAppearance() {
var theme = "lightTheme";
var applicationAppearanceStyle =
kony.application.getSettingValue("applicationAppearanceStyle");
switch (applicationAppearanceStyle) {
case kony.application.APPEARANCESTYLE_DARK:
theme = "darkTheme"
break;
case kony.application.APPEARANCESTYLE_LIGHT:
//alert("selected light mode");
break;
case kony.application.APPEARANCESTYLE_UNKNOWN:
//alert("selected unknown mode");
break;
¥
function onThemeCallback () {
//alert("theme callback");
}

kony.theme.setCurrentTheme(theme, onThemeCallback, onThemeCallback);

Overriding the applicationAppearanceStyle Entire App:

The system automatically opts in any app built against the iOS 13.0 or later
SDK to both light and dark appearances. If you need extra time to work on your
app’s Dark Mode support or want to keep your app in a single style, you can
opt out by including the UlUserInterfaceStyle key (with a value of Light or Dark)
in your app’s infoplist_configuration.json file(located at
{your_app_name}/resources/common). Setting this key causes the system to
ignore the user’s preference from device settings and always apply the specific
appearance to your app.



Note: Apple says "Supporting Dark Mode is strongly encouraged. Use
the UIUserInterfaceSty le key to opt out only temporarily while you work
on improvements to your app's Dark Mode support.”

For more details and guide lines please check out the apple documents:

https://developer.apple.com/design/human-interface-guidelines/ios/visual-design/dark-

mode/

https://developer.apple.com/documentation/xcode/supporting dark mode in your int
erface/choosing a specific interface style for your ios app?language=objc

https://developer.apple.com/documentation/xcode/supporting dark mode in your int
erface?language=obijc

https://developer.apple.com/documentation/uikit/uitraitcollection/1651063-
userinterfacestyle?language=obijc




